FOR IMMEDIATE RELEASE

CONTACT: WHITNEY WHITE
+1 732-764-0900

CHROMIS AND PARTNERS ANNOUNCE INNOVATIVE ACTIVE OPTICAL CABLES FOR MULTI-GIGABIT INTERCONNECTS

Chromis Fiberoptics, Vixar, Inc., Silicon Line and Unive, Inc. collaborate to demonstrate 1st POF-based compact mobile high-speed HDMI AOC

CONSUMER ELECTRONICS SHOW, LAS VEGAS, NV – JANUARY 2, 2013 – Chromis Fiberoptics - a technology innovator in polymer optical fibers and cables - has worked closely with Vixar, Silicon Line, and Unive to be first to demonstrate a compact mobile high-speed HDMI Active Optical Cable (AOC) using Plastic Optical Fiber (POF). The demonstration will be at the 2013 International CES event (Booth #75508, located in The Venetian), January 8-11, 2013.

Ultra-high-bandwidth media interconnects are beyond the limits of copper for practical cable lengths, yet the price of active cables made with glass fiber is prohibitive for many applications from 3 to 100 meters. While copper is the lowest cost for the very shortest bandwidth-distance needs, it has severe practical reach (distance) limits, e.g., a few meters for USB® 3.0 and Thunderbolt®. These constraints for copper-based and glass-based cables force a large portion of the cable market to either pay a high price for glass-based cables or accept the bandwidth-distance limitations of copper.

The combination of graded-index POF (GI-POF) and 680 nm VCSELs offers an elegant alternative to these limitations. This combination supports data rates of greater than 10 Gbps at approximately 20 meters, and at a significantly lower cost than glass fiber solutions. This approach can be offered at more than 40% less than standard multimode glass solutions and 65% less than bend-insensitive glass fiber solutions formulated to compete with GI-POF’s bend-radius. Based on total cost and overall performance, the new AOCs developed by Chromis and its partners open the way to optical communications for consumer electronics applications.

About Chromis Fiberoptics, Inc.

Chromis Fiberoptics is a pioneer and technology innovator in the design and manufacture of plastic optical fibers (POF) and cables for multi-gigabit/second data connectivity over short distances. Our light-weight, tight-bending, high-performance optical fibers are used in a wide range of applications, including consumer electronics, high-speed video cables and other data communication links, and medical/industrial sensing applications. Chromis produces all of its custom fibers and cables at its headquarters in Warren, N.J. and sells its products around the globe.

www.chromisfiber.com
6 Powder Horn Drive, Warren, NJ 07059 USA
About Vixar, Inc.

Vixar is located in Plymouth, MN. Vixar specializes in components and custom subassemblies of a type of semiconductor laser known as a VCSEL (Vertical Cavity Surface Emitting Laser). These devices enable miniaturization and improved energy efficiency for wireless industrial and medical sensors, the reduction in size and cost of medical diagnostic equipment for personalized medicine, and higher speed, lower cost links for consumer based networks and equipment. Vixar’s contribution to this demonstration at CES in Las Vegas is their 680 nm VCSEL designed to support 10 Gbps.

Media contact: Wade Campbell, wcampbell@vixarinc.com, 763-746-8045x305, www.vixarinc.com

About Silicon Line GmbH

Silicon Line is a fabless analog IC company designing and providing physical layer technologies that enable ultra-low power, low-cost optical links at multi-gigabit rates for mobile and consumer platforms. Silicon Line GmbH contributed their ultra-low power VCSEL driver and TIA chipset for HDMI to the demonstration. Silicon Line is located at Elsenheimerstrasse 48, D-80687 Munich, Germany.

Additional information is available at www.silicon-line.com.

Media Contact: Ian Jackson, Silicon Line GmbH, Phone: +49 89 23549061 or press@silicon-line.com

About Unive, Inc.

Unive is located in Fremont, CA and Bundang, Korea. Unive’s optics business unit has a very unique optical engine solution in optical interconnect technology based on proprietary high precision plastic injection mold, fully-passive aligned optical assembly process and a special mounting machine for high volume manufacturing. The technology enables low cost active optical cable products for mobile and consumer applications. Unive contributed the very compact optical assembly based on a high precision plastic injection mold, and integrated the components into an AOC.

Media contact: Yung Sung Son, ysson@unive-inc.com, 408-782-4506, www.aoc-unive.com